Aliases: C24.3A4, C23.3SL2(𝔽3), C23.4Q8⋊C3, C23.18(C2×A4), C2.C42⋊2C6, C23.3A4⋊3C2, C2.3(C23.A4), C22.4(C2×SL2(𝔽3)), SmallGroup(192,198)
Series: Derived ►Chief ►Lower central ►Upper central
C2.C42 — C24.3A4 |
Generators and relations for C24.3A4
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g3=1, e2=gbg-1=bcd, f2=gcg-1=b, ab=ba, ac=ca, ad=da, eae-1=abc, faf-1=abd, ag=ga, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fef-1=de=ed, df=fd, dg=gd, geg-1=bef, gfg-1=cde >
Character table of C24.3A4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 16 | 16 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | -1 | ζ65 | ζ3 | ζ6 | ζ6 | ζ65 | ζ32 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | -1 | ζ6 | ζ32 | ζ65 | ζ65 | ζ6 | ζ3 | linear of order 6 |
ρ7 | 2 | -2 | 2 | -2 | 2 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ8 | 2 | -2 | 2 | -2 | -2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ9 | 2 | -2 | 2 | -2 | -2 | 2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | ζ3 | ζ3 | ζ6 | ζ32 | ζ65 | ζ32 | complex lifted from SL2(𝔽3) |
ρ10 | 2 | -2 | 2 | -2 | -2 | 2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | ζ32 | ζ32 | ζ65 | ζ3 | ζ6 | ζ3 | complex lifted from SL2(𝔽3) |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | ζ65 | ζ3 | ζ32 | ζ6 | ζ3 | ζ32 | complex lifted from SL2(𝔽3) |
ρ12 | 2 | -2 | 2 | -2 | 2 | -2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | ζ6 | ζ32 | ζ3 | ζ65 | ζ32 | ζ3 | complex lifted from SL2(𝔽3) |
ρ13 | 3 | 3 | 3 | 3 | -3 | -3 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23.A4 |
ρ16 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23.A4 |
ρ17 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ18 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 3)(6 8)(9 12)(14 16)(17 19)(18 20)
(1 3)(2 4)(5 7)(6 8)
(9 12)(10 11)(13 15)(14 16)
(1 3)(2 4)(5 7)(6 8)(9 12)(10 11)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 6 3 8)(2 7 4 5)(9 13)(10 16)(11 14)(12 15)(17 24)(18 23)(19 22)(20 21)
(1 9 20)(2 15 24)(3 12 18)(4 13 22)(5 10 21)(6 14 19)(7 11 23)(8 16 17)
G:=sub<Sym(24)| (1,3)(6,8)(9,12)(14,16)(17,19)(18,20), (1,3)(2,4)(5,7)(6,8), (9,12)(10,11)(13,15)(14,16), (1,3)(2,4)(5,7)(6,8)(9,12)(10,11)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,6,3,8)(2,7,4,5)(9,13)(10,16)(11,14)(12,15)(17,24)(18,23)(19,22)(20,21), (1,9,20)(2,15,24)(3,12,18)(4,13,22)(5,10,21)(6,14,19)(7,11,23)(8,16,17)>;
G:=Group( (1,3)(6,8)(9,12)(14,16)(17,19)(18,20), (1,3)(2,4)(5,7)(6,8), (9,12)(10,11)(13,15)(14,16), (1,3)(2,4)(5,7)(6,8)(9,12)(10,11)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,6,3,8)(2,7,4,5)(9,13)(10,16)(11,14)(12,15)(17,24)(18,23)(19,22)(20,21), (1,9,20)(2,15,24)(3,12,18)(4,13,22)(5,10,21)(6,14,19)(7,11,23)(8,16,17) );
G=PermutationGroup([[(1,3),(6,8),(9,12),(14,16),(17,19),(18,20)], [(1,3),(2,4),(5,7),(6,8)], [(9,12),(10,11),(13,15),(14,16)], [(1,3),(2,4),(5,7),(6,8),(9,12),(10,11),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,6,3,8),(2,7,4,5),(9,13),(10,16),(11,14),(12,15),(17,24),(18,23),(19,22),(20,21)], [(1,9,20),(2,15,24),(3,12,18),(4,13,22),(5,10,21),(6,14,19),(7,11,23),(8,16,17)]])
G:=TransitiveGroup(24,293);
(1 13)(2 11)(3 14)(4 12)(5 9)(6 8)(7 16)(10 15)(17 22)(18 23)(19 24)(20 21)
(1 3)(2 4)(11 12)(13 14)
(5 16)(6 15)(7 9)(8 10)
(1 3)(2 4)(5 16)(6 15)(7 9)(8 10)(11 12)(13 14)(17 19)(18 20)(21 23)(22 24)
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 11 3 12)(2 14 4 13)(6 15)(7 9)(17 20)(18 19)(21 24)(22 23)
(1 15 22)(2 9 20)(3 6 24)(4 7 18)(5 21 11)(8 19 14)(10 17 13)(12 16 23)
G:=sub<Sym(24)| (1,13)(2,11)(3,14)(4,12)(5,9)(6,8)(7,16)(10,15)(17,22)(18,23)(19,24)(20,21), (1,3)(2,4)(11,12)(13,14), (5,16)(6,15)(7,9)(8,10), (1,3)(2,4)(5,16)(6,15)(7,9)(8,10)(11,12)(13,14)(17,19)(18,20)(21,23)(22,24), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,11,3,12)(2,14,4,13)(6,15)(7,9)(17,20)(18,19)(21,24)(22,23), (1,15,22)(2,9,20)(3,6,24)(4,7,18)(5,21,11)(8,19,14)(10,17,13)(12,16,23)>;
G:=Group( (1,13)(2,11)(3,14)(4,12)(5,9)(6,8)(7,16)(10,15)(17,22)(18,23)(19,24)(20,21), (1,3)(2,4)(11,12)(13,14), (5,16)(6,15)(7,9)(8,10), (1,3)(2,4)(5,16)(6,15)(7,9)(8,10)(11,12)(13,14)(17,19)(18,20)(21,23)(22,24), (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,11,3,12)(2,14,4,13)(6,15)(7,9)(17,20)(18,19)(21,24)(22,23), (1,15,22)(2,9,20)(3,6,24)(4,7,18)(5,21,11)(8,19,14)(10,17,13)(12,16,23) );
G=PermutationGroup([[(1,13),(2,11),(3,14),(4,12),(5,9),(6,8),(7,16),(10,15),(17,22),(18,23),(19,24),(20,21)], [(1,3),(2,4),(11,12),(13,14)], [(5,16),(6,15),(7,9),(8,10)], [(1,3),(2,4),(5,16),(6,15),(7,9),(8,10),(11,12),(13,14),(17,19),(18,20),(21,23),(22,24)], [(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,11,3,12),(2,14,4,13),(6,15),(7,9),(17,20),(18,19),(21,24),(22,23)], [(1,15,22),(2,9,20),(3,6,24),(4,7,18),(5,21,11),(8,19,14),(10,17,13),(12,16,23)]])
G:=TransitiveGroup(24,307);
Matrix representation of C24.3A4 ►in GL6(𝔽13)
0 | 5 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
11 | 11 | 7 | 7 | 8 | 3 |
2 | 0 | 6 | 0 | 5 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 9 | 9 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
3 | 3 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
10 | 10 | 4 | 4 | 12 | 11 |
0 | 3 | 0 | 0 | 1 | 1 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 0 | 12 | 12 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
10 | 10 | 4 | 4 | 12 | 11 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
G:=sub<GL(6,GF(13))| [0,8,0,0,11,2,5,0,0,0,11,0,0,0,0,8,7,6,0,0,5,0,7,0,0,0,0,0,8,5,0,0,0,0,3,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,9,0,0,0,12,0,9,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,3,0,12,0,0,0,3,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,10,0,0,12,0,0,10,3,0,0,0,1,4,0,0,0,1,0,4,0,0,0,0,0,12,1,0,0,0,0,11,1],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,4,0,0,12,0,0,0,0,0,0,0,1,12,0,0,0,0,0,12],[0,0,0,10,1,0,0,0,0,10,0,0,1,0,0,4,0,0,0,1,0,4,0,0,0,0,1,12,0,0,0,0,0,11,0,9] >;
C24.3A4 in GAP, Magma, Sage, TeX
C_2^4._3A_4
% in TeX
G:=Group("C2^4.3A4");
// GroupNames label
G:=SmallGroup(192,198);
// by ID
G=gap.SmallGroup(192,198);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,1640,135,604,1011,934,521,304,851,1524]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^3=1,e^2=g*b*g^-1=b*c*d,f^2=g*c*g^-1=b,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,f*a*f^-1=a*b*d,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*e*f^-1=d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=b*e*f,g*f*g^-1=c*d*e>;
// generators/relations
Export
Subgroup lattice of C24.3A4 in TeX
Character table of C24.3A4 in TeX